Shuffle and Learn: Unsupervised Learning Using Temporal Order Verification

نویسندگان

  • Ishan Misra
  • C. Lawrence Zitnick
  • Martial Hebert
چکیده

In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semantic labels, we learn a powerful visual representation using a Convolutional Neural Network (CNN). The representation contains complementary information to that learned from supervised image datasets like ImageNet. Qualitative results show that our method captures information that is temporally varying, such as human pose. When used as pre-training for action recognition, our method gives significant gains over learning without external data on benchmark datasets like UCF101 and HMDB51. To demonstrate its sensitivity to human pose, we show results for pose estimation on the FLIC and MPII datasets that are competitive, or better than approaches using significantly more supervision. Our method can be combined with supervised representations to provide an additional boost in accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning using Sequential Verification for Action Recognition

In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semant...

متن کامل

Incorporating Scalability in Unsupervised Spatio-temporal Feature Learning

Deep neural networks are efficient learning machines which leverage upon a large amount of manually labeled data for learning discriminative features. However, acquiring substantial amount of supervised data, especially for videos can be a tedious job across various computer vision tasks. This necessitates learning of visual features from videos in an unsupervised setting. In this paper, we pro...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass...

متن کامل

Time-Contrastive Learning Based Unsupervised DNN Feature Extraction for Speaker Verification

In this paper, we present a time-contrastive learning (TCL) based unsupervised bottleneck (BN) feature extraction method for speech signals with an application to speaker verification. The method exploits the temporal structure of a speech signal and more specifically, it trains deep neural networks (DNNs) to discriminate temporal events obtained by uniformly segmenting the signal without using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016